New TA Index-Based Rollover Prevention System for Electric Vehicles

نویسندگان

  • Xiang Liu
  • Min Xu
  • Mian Li
چکیده

In addition to clean transportation and energy savings, electric vehicles can inherently offer better performance in the field of active safety and dynamic stability control, thanks to the superior fast and accurate control characteristics of electric motors. With the novel wheel status parameter TA for electric vehicles proposed by the authors in an earlier publication, a new TA index (TAI)-based rollover prevention method is presented in this paper to improve the driving performance of EVs equipped with in-wheel motors. A three-level electric vehicle control structure is used to analyze the effective control steps for rollover prevention with the newly proposed TAI method. The simulation is conducted using an in-house developed electric vehicle dynamic model. The simulation results prove the feasibility of using TAI to detect rollover. The experiment uses an electric vehicle equipped with four in-wheel motors in the authors’ research lab. The vehicle parameter and performance data are imported to CarSim, which is industrial standard vehicle dynamic analysis software to run the rollover test. The experimental results also demonstrate that TAI is an effective method of rollover prevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Security Constrained Unit Commitment in the Simultaneous Presence of Demand Response Sources and Electric Vehicles

Due to the ever-growing load, especially peak load, the increase in the capacity of plants is inevitable for the response to this growth. Peak load causes increases in customer costs and vast investments in generating and transmission parts. Therefore, restructuring in the electrical industry, competition in the electrical market and Demand Response Programs (DRPs) are of special importance in ...

متن کامل

Robust optimal multi-objective controller design for vehicle rollover prevention

Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The obj...

متن کامل

A new control strategy for energy management in Plug-in Hybrid Electric Vehicles based on Fuzzy Cognitive Maps

In this paper, a new control strategy for energy management in Plug-in Hybrid Electric Vehicles (PHEVs) using Fuzzy Cognitive Map (FCM) is presented. In this strategy, FCM is used as a supervisory control such that the State of Charge (SoC) of the battery is kept in the acceptable range and fuel consumption per kilometer is reduced, in addition to providing the request power. Since this method ...

متن کامل

Center of Gravity Estimation and Rollover Prevention Using Multiple Models & Controllers

In this paper, we present a methodology based on multiple models and switching for real–time estimation of center of gravity (CG) position and rollover prevention in automotive vehicles. Based on a linear vehicle model in which the unknown parameters appear nonlinearly, we propose a novel sequential identification algorithm to determine the vehicle parameters rapidly in real time. The CG height...

متن کامل

Supervisory Control for Turnover Prevention of a Teleoperated Mobile Agent with a Terrain-Prediction Sensor Module

Teleoperated mobile agents (or vehicles) play an important role especially in hazardous environments such as inspecting underwater structures (Lin, 1997), demining (Smith, 1992), and cleaning nuclear plants (Kim, 2002). A teleoperated agent is, in principle, maneuvered by an operator at a remote site, but should be able to react autonomously to avoid dangerous situations such as collisions with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015